

HAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE (MAJOR AND MINOR)	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: TPH601S	COURSE NAME: THERMAL PHYSICS
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

	FIRST OPPORTUNITY EXAMINATION PAPER
EXAMINER(S)	DR VAINO INDONGO
MODERATOR:	PROF SYLVANUS ONJEFU

	INSTRUCTIONS	
1.	Write all your answers in the answer booklet provided.	
2.	Read the whole question before answering.	
3.	Begin each question on a new page.	
4.	The list of constants and useful formulae are on the last page of this paper.	

PERMISSIBLE MATERIALS

1. Non-Programmable Scientific Calculator

THIS PAPER CONSISTS OF 5 PAGES

(INCLUDING THIS FRONT PAGE)

QUESTION 1 (20)

1.1 Briefly explain of the following thermodynamic terms:

- (i) Environment (2)
- (ii) Universe (2)
- (iii) Isobaric process (2)
- (iv) Temperature (2)
- 1.2 State the zeroth law of thermodynamics. (2)
- 1.3 A male student in a physics class takes two cups of water at 303 K and mixes them with one cup of water at 278 K (each mass of water weighs 50 g). Set the equation
 Q_{total} = 0 and calculate the likely temperature of the mixture? Show your work/steps. (6)
- 1.4 A brass rod is 0.70 m long at 40°C. Find the increase in length of this rod at 70°C. (Hint: $\alpha = 1.90 \times 10^{-5}$ /°C) (4)

- 2.1 A steam in cylindrical glass of height h = 100 mm covered with a piston of mass 3500 g and has a cross sectional area of 450 cm². Determine the:
 - (i) pressure that is exerted by this piston on the gas in the chamber, as shown in Figure 1. Assume gravitational acceleration 'g' to be 9.81 m/s². (4)
 - (ii) work done when the same cylinder is heated afterwards at a constant pressure of 1 atm and its initial volume changes from V_0 to $5V_0$. (4)

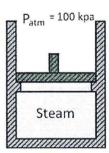


Fig. 1

2.2 An amount of heat Q was added to a substance (ice block) of mass 500 g at a temperature of – 40°C and is converted to steam at a temperature of 140°C (Fig 2). The specific heats, c, of ice, water and steam are 2060 J/kg.°C, 4180 J/kg.°C and 1870 J/kg.°C, respectively. The latent heats of fusion and vaporizations are 336 kJ/kg and 225 kJ/kg, respectively. Determine:

- (b) heat energy required to change the temperature of ice from -40° C to 0° C. (3)
- (c) total heat energy required to change the temperature of a substance between 0°C to 120°C.

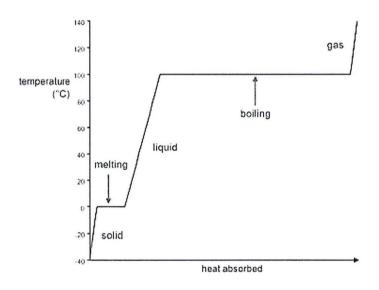


Fig. 2

QUESTION 3 (20)

- 3.1 An ideal gas undergoes an *isothermal* (constant-temperature) compression at temperature T, with its volume changing from V_1 to V_2 .
 - (i) Prove that the work done during this process is given by an expression $W=nRTln\frac{P_1}{P_2}. \tag{6}$
 - (ii) Is the work done positive or negative? Give reasons. (2)

3.2 A temperature of 120 moles of monoatomic ideal gas with a ratio $\gamma=1.600$ confined	i
in a cylinder was increased from 273.15 K to 292.15 K at a uniform atmospheric press	sure
(1 atm). The cylinder was covered with a piston and the volume increases by	
$4.28 \times 10^{-2} \text{cm}^3$. Calculate the amount of heat transferred.	(5)
3.3 Use the relationships for specific heats, Cv and Cp as well as ideal gas constant R to	
prove that $TV^{\gamma-1}$ is constant under an adiabatic condition.	(7)
QUESTION 4	(20)
4.1 Define entropy and state the second law of thermodynamics.	(3)
4.2 A gasoline truck engine takes in 35 kJ of heat and delivers 13.5 kJ of mechanical	
work per cycle. The heat is obtained by burning gasoline with heat of combustion	
$l_c = 5 \times 10^4$ J/g. Calculate;	
(a) the thermal efficiency of this engine?	(3)
(b) heat discarded per cycle	(3)
(c) If the engine goes through 8 cycles per second, what is its power output in kW	
and hp? Hint: 1 hp = 746W	(4)
(d) How much gasoline is burned in each cycle in kg?	(4)
4.3 Suppose an engine absorbs 1000 J of heat at 383.15 K and expels 713 J at 273.15 K	
per cycle. Determine the total entropy of the system in one cycle.	(3)
OUESTION 5	(20)
QUESTION 5	(20)
5.1 Show that internal energy (U) is a thermodynamic potential which is a function of	
entropy and volume.	(4)
5.2 Derive the differential form of Gibb's free energy/function from $G = U + pV - TS$.	(6)

5.3 (i) The speeds of five molecules of a gas are 24k, 25k, 26k, 23k, 30k all in ms⁻¹, where k

is equal to the number of molecules. Evaluate the rms speed. (7)

(ii) Determine average kinetic energy of a gas at a temperature 27°C. (3)

END

Useful equations and constants:

$$<$$
 K. E. $> = \frac{1}{2} \text{mv}_{\text{rms}}^2 = \frac{1}{2} \text{m} \frac{3k_B T}{m} = \frac{3}{2} k_B T$

$$v_{\text{rms}} = \sqrt{\frac{3PV}{Nm}} = \sqrt{\frac{3Nk_B T}{Nm}} = \sqrt{\frac{3k_B T}{m}}$$

The ideal gas law $PV = Nk_BT$

Boltzman's constant: $k_B = 1.38 \times 10^{-23} \text{ JK}^{-1}$,

Avogadro's number: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Mean free path: $\lambda = \frac{k_B T}{\sqrt{2} d^2 P}$

 $1 \text{ atm} = 1.01 \times 10^5 \text{ Pa}$

Maxwell-Boltzmann Distribution: $f(V)=4\pi\left[\frac{m}{2\pi k_BT}\right]^{\frac{3}{2}}v^2e^{-mv^2/_{2k_BT}}$